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On the Free Vibration Analysis of a Plate with an Oblique Inelastic
Line Constraint
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The free vibration of a rectangular plate with an oblique inelastic line constraint under

various boundary conditions is analytically investigated. A double Fourier sine series is
employed for the modal displacement functions and the method of stationary potential energy

is applied for the analysis to obtain the general analytical solution. The geometric boundary

conditions and interior oblique inelastic line constraint are enforced by means of Stokes’

Transformation and the Lagrange multipliers. The normalized frequency parameters and mode

shapes are obtained for various houndary conditions and the results are cross-checked with
those by MSC/NASTRAN Finite Element package.

Free Vibration Analysis, Oblique Inelastic Line Constraint, Double Fourier

Sine Series, Stationary Potential Energy, Stokes’ Transformation, Lagrange
Multipliers, MSC/NASTRAN, Normalized Frequency Parameters, Mode Shapes

Key Words :

Notations

D . Plate flexural rigidity

a.b : Plate width and length

h . Plate thickness

E > Young’s modulus

% : The Laplacian

w(x,y) : Modal displacement functions of
a plate

flx..t) : Transverse displacements of a
plate

v . Poisson s ratio

1] . Circular frequency
Q=d*wVhpo/D : Normalized frequency parame-

ter
0 . Mass density
o . Functional

S . Variation of the functional

AmanOmBmmC‘mnvDﬁvD{)mDmOvanﬁEm()'EmmEOm ‘mn
. Fourier coefficients

i : End points of an inelastic line
constraint
A A Ay : Lagrange multipliers(; =1, 2,

* Korean Industrial Property Office.
** Dept. of Mechanical Design and Production Engi-
neering Seoul National University

HesEcrDerTe

HpsEq D Ts

U
Kp
Umax

Kmax

w0 v
MNLPQRS

)
. Aassumed displacements at the
corners
. Fourier coefficients of the

assumed displacements at the
boundary

. Angle of the inelastic line con-

straint

. Strain energy of the plate
. Kinetic energy of the plate
. Maximum strain energy of the

plate

: Maximum kinetic energy of the

plate
Fourier numbers
Number of terms of m, n. [, p,

g, v, §

: Transformed coordinate system
. Elements of the frequency deter-

minant

. Length of the inelastic line con-

straint

. Symbol for a free boundary con-

dition

. Symbol for a clamped boundary

condition



On the Free Vibration Analysis of a Plate with an Oblique Inelastic Line Constraint 359

: Symbol for a simply supported
boundary condition

1. Introduction

The free vibration of a rectangular plate has the
been subject of numerous studies, many of which
has discussed the analysis of the plate which has
internal line support. Plate structures of bridge
slabs and floor systems which are supported on
load bearing walls are used in many engineering
applications. The plates involving various com-
plicating factors have been considered, including
the case in which the plates sometimes have inter-
mediate inelastic constraints arranged obliquely
to the edge of the plate. The complexity of the
layout makes it difficult for designers to model
the floor systems by the equivalent frame method.
A rigorous free vibration analysis of a plate with
inelastic line constraint is important to under-
stand the behavior of the plate.

An excellent review of the plate vibration
problems with various boundary conditions was
made by Leissa (1969). Gorman (1978) used a
double Fourier sine series as an analytical free
vibration solution for a rectangular plate with an
inelastic support along one diagonal. However,
the solution was obtained only for a simply
supported boundary condition. Takahasi and
Chishaki (1978) represented the internal line
supports by rows of equidistant point support and
calculated the natural frequencies and mode
shapes of the plate with simply supported bound-
ary condition. Chung (1981) obtained the natural
frequencies and mode shape of the beams with
point support under various boundary conditions
by using the Stokes’ Transformation. Kim and
Dickinson (1987), by using orthogonal poly-
nomial functions, studied the flexural vibration of
a thin rectangular plate that may be continuous
over several supports in one or two directions.
These solutions could not deal with boundary
conditions which included at least one free
boundary condition. In a recent paper by Young
and Dickinson (1993), simple polynomials were
used with the Rayleigh-Ritz method to obtain the
natural frequency parameters of a rectangular

plate with an internal line support parallel to the
edges. Liew and Xiang (1993) studied the trans-
verse vibration of a thick rectangular Mindlin
plate with longitudinal, latitudinal and diagonal
line support by the two-dimensional polynomials
and Rayleigh-Ritz method.

However, the free vibration analysis of the
rectangular plate with an oblique line support,
which can be used for the wide range of boundary
conditions, including the free boundary condition
without assuming specific modal functions has
not been published up to authors’ best knowl-
edge.

In this paper the analytical solutions for the
and mode
shapes of a double Fourier sine series type are
obtained for the free vibration of a rectangular

normalized frequency parameters

plate with an inelastic oblique line constraint for
various boundary conditions. A unified analytical
method is developed, which can be used for a
plate with any types of boundary conditions and
inelastic oblique line constraint. This method
allows freedom in choosing the modal displace-
ment functions and yields analytical solutions for
the natural frequencies as well as the mode
shapes. It is not necessary to assume new modal
displacement functions for each change in bound-
ary condition and intermediate support condition.
The use of a double Fourier sine series as modal
functions will simplify the free vibration analysis.

In the forced vibration analysis, the spatial
distribution of an applied force can be expressed
with double Fourier sine series. Also its orth-
ogonal property is a merit for an efficient numeri-
cal calculation. To enhance the flexibility of the
double Fourier sine series, Lagrange multipliers
are utilized to match the interior inelastic oblique
line constraint and geometric boundary condi-
tions, and Stokes’ Transformation is used to
handle the displacements that are not satisfied by
the double Fourier sine series.

2. Theory

Consider a rectangular plate with an oblique
inelastic line constraint as shown in Fig. 1.
The typical boundary conditions are imposed
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Fig. 1 The geometry and coordinate system of a

rectangular plate with an oblique inelastic
line constraint.

onw(x, ¥), ws x(x, ¥), w» y(x. ¥), Vel ¥), V,
(x» v)» Me(x, ¥). My(x, y) at the boundaries,
and where w (x, y) are the modal displacement,
w, x(x, v) and w, ,(x, y) are the derivatives of
the modal displacement, V. (x, v} and V,(x, v)
are the shear forces, and M, (x. y) and M,(x. y)
are bending moments. The shear forces and bend-
ing moments are expressed as follows:

Vi=—D[Wext 2= 1) wx0] (N
Vy:—‘DI:u"y_yy+ (Z‘V) H’,xxy] (2)
Mx:W,xx+ VW, vy (3)
My=10y9+ V10 xx (4)

where y is Poisson ratio and [ is the plate
bending rigidity.

2.1 Method of stationary potential energy

The flexural potential energy of the plate [/,
and the corresponding kinetic energy of the plate
K, can be expressed as

U= [ [ (192w (. )13 20— 0)

[“’,x:{(?ﬂ _V)'W,yy(x- _V) — W, iy(x’ y)]}dXdy
(5)
_ph/' / w?i(x, v)dxdy (6)

where V? is the Laplacian, p is the mass den-
sity, ¢ and p are the plate width and length, and
h is the plate thickness

The method of stationary potential energy is

N

t2
based on the variational principle of (Up

—Tp) di

to all the displacements that do not violate the

=0. The varijation is taken with‘tespect

geometric boundary conditions. The shear forces
and the bending moments are associated with the
natural boundary conditions. The displacements
and the slopes of the plate are associated with the
geometric boundary conditions.

2.2 Modal displacement functions

If w(x, y) is a modal displacement function
that can be expanded in a double Fourier sine
series in the region (0<x<a. 0<y<p), and if
its partial derivatives can be expanded in a cosine
-sine series, the coefficients are formed by the

usual rule.
L . omnax NIy
w(x, y)=m}_.:mZ=‘.1Amﬂsmf~*sm 5 (7
flx, yo H)=w{x. y)sin wt (8)

where A,, is the Fourier coefficient of w (x,
v}, m and » are the Fourier number, }/ and N
are the numbers of terms of fourier series (s,
n) and f(x, y. t) is the time-varying transverse
displacement of the plate.

The assumed modal displacements at the edges
and at the corners of a rectangular plate may be
represented by

w{a. y)*Eppsm y(0<y<b x=a) (9a)

w (0, y)zzleq sin 4 b Y (0< y< b, x=0) (9b)
&

R
:Z]lrr, sin mx(0<x<ay b) (%)

S .
w(x, 0) :Z}IUS Sin—é%(0<x<a, y=0) (9d)
w (0, 0) = pe, w0, b) =¢c
wla b) =1 wla. 0)=up (10)

where P, ). R and are the number of term~ in
Fourier series (p, ¢, 7, s)-

It is not necessary that the double Fourier sine
series satisfies any particular boundary condi-
tions, since Lagrange multipliers and Stokes’
Transformation can be to match the

appropriate geometric boundary conditions. In

used

the stationary potential energy approach, it is not
necessary to enforce the natural boundary condi-
tions but it is necessary to enforce the geometric
boundary conditions. The double Fourier sine
series in Eq. (7) incidentally satisfies all the
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geometric boundary conditions for the simply
supported plate (S-S-S-S) except the oblique
inelastic line constraint and natural boundary
conditions. Lagrange multipliers are necessary to
enforce the generul vc.oonetric boundary condi-
tions.

2.3 Stokes’ Transformation

By differentiating the double Fourier sine
series, the modal displacement function can be
expressed as a double Fourier cosine series with-
out the constant term which is not considered to
be a complete set of functions. In order to obtain
the exact series expressions for the derivatives of a
double Fourier sine series, Stokes’ Transforma-
tion must be utilized. Stokes’ Transformation
consists of defining each derivative with an in-
dependent series and of integrating it by parts and
the newly defined series to obtain the relationship
between the double Fourier series coefficients:

The successive derivatives of the plate modal
displacement functions are as follows:
wax(x. ¥), ZBOn51n my + Zlngmn

max . nxy
cos — - 8in —5"
a b

(l1a)

O<x<a, 0<y<h).

:glg’ Crn Sin m;rx sinlgy—(llb)
(0<x<a, 0<y<b),

Wy (X ) =Dt 2 Do cos _mm + Z]DO,7

Wox (X2 )

nr mrx RITY
cos —~y + Zl 21 Doy cos === cos —-b) -
=

(ngéa, O<y<ph) (l1c)
X ommx | A4 .
w,y(x, y)ﬁmZ:]lEmo sin +Z‘1§xh
MTX nry (l |d)

sin —== cos —5=-

a b
(0<x<a, 0<y<b).
Z Zlf'mn sin - m;rx sin%rl (l1e)
0<x<qa. 0<y<h)

By using the Stokes’ Transformation, the coeffi-

1V,yy(ls v

cients of derivatives of the modal displacement
functions are obtained by integrating by parts of
(1la) ~Eq. (1le). The coefficients of
the double Fourier series are as follows.

using Eq.

’) b
Bon = {2 1y Sin Ly g &g Sin qu }
sin 222y (12a)

Bon= m”Amn+ab/ {(2@51112,%'*)(—1)'”

—qglsq sin -gg—y}sm ”Zy dy (12b)
2
Cmn" __<_Z{;7_f__) Amn (IZC)
Do“fc wl)c“’/.lc (l2d)
D()ﬂ::TL‘(“l)"_5c_Uc(_l)n‘{'ﬂc
mr (v, o 1@1) oy
7 ﬁ{@f“’sm A
i AT
sin 42|y (12¢)
Dmozzrc(él)m‘ec“[)r(‘])m+#c

+- mg—l {(ﬁ] o sin——CgE)(—])”—ius

a

L smx
sin = }dx (12f)
Yy T AT
Don ( i1 )Amn (12g)
Epo=" ab { 2 Tr. Sin ——— Z Vs SIN %}
né’”aﬂ—dx (12h)

“ rmx 7
Em b /4mn+ab A {(22’1‘5 Sln a )( 1)

r=1

S - .
fsglvs sin %}sin LZZlm—aix (121)
; 2
[:mn h <‘}‘/lz)7£> Amn ( 12.])

2.4 Mathematical formulation

According to the variational principle, the
shear force boundary condition needs no explicit
consideration since it is natural boundary condi-
tion. If the geometric boundary condition is
clamped at the edges, the derivatives of the dis-
placements at the edges must be forced to zero.

w.x(a y) Z Zan(“l) sin ATy =)

3 (13a)

w0, y) = Z Z B sin 22 —0

. (13b)

wy (2, b) = z_lglEm,,vl) sin 77%=0  (13¢)
wy(x, 0) = Z‘Ig]Fm sin ’”—fﬁzo (13d)

The geometric boundary conditions that must



362 Jong Ouk Youn, Jang Moo Lee and Yoon Young Kim

be forced to zero are the end points of the oblique
inelastic constraint line.

Q

w (0, ¢;) = EIEq sin q7gcl =0 (14a)
p2
P

wla c) =2 up sinl’ﬁbc—zzo (14b)

where ¢, and ¢, are the ends of oblique inelas-
tic line constraint.

It is straightforward to have the coordinate
system transformation rule between X-Y and
U-V (see Fig. 1). The [J-V is the coordinates
of the oblique inelastic line constraint in the
X-Y coordinate system.

The coordinates of the inelastic line constraint
and in U axis are as follows:

X=ucos 8, y=c+usiné (13)

where g is the angle of the oblique inelastic
line constraint.

The displacement y (%, 7) along the obligue
inelastic line constraint that lies in the -V
coordinates is as follows.

; N _
w(E, §)= 3 3 A sin 22X gin 22T _g
m=17=1 a b
(16a)
(2, )=§j éAMSmMM
sin n7r(c1+bu sin ) —0 (16b)
0<u<d)

where ¢ is the length of the oblique inelastic
line constraint.

The variational procedure then involves minim-
ization of the following functional @ to be made
stationary:

O = Unax— Tmax+/b{iAll cos lLbyw,x (a, y) }dy

[ B e cos Lruco, »}ay
/ (2
[z
[

2 A cosﬁwy(x, b)}aix

2

Q
Al{ 2 easin q@“}

A cos w—w y(x, 0) }dx (17)

-

i} s sin ‘uw(f 37)}du

=1
Al )

where / is the Fourier numbers of Lagrange
multipliers and [ is the number of terms(/) in
Lagrange multipliers.

Lagrange multipliers (A, /s A;) are related
to the force type quantities and required to
enforce the inelastic oblique line constraint. Other
Lagrange multipliers (A;, Ap Am Ay are
related to the moment type quantities and
required to enforce the zero derivatives along the
boundary. By substitution of the double Fourier
sine series and its appropriate derivatives in Eq.
(7) and Eq. (8) and Eq. (11a) ~Eq. (lle) into
Eq. (17), the frequency determinant may now be
easily constructed with the stationary conditions
of the functional with respect to the quantities
(Amns Hps Eqs é‘n Dss fer Ecv Tes Voo A Moy Ais A,

T Ats)-

The aforementioned equations above obtained
from stationary conditions lead to this homogene-
ous equation.

[Ci,j:' {Amm Hps Eqs Trs Vs ey Ecv Tes VUes Al, A2a
Au~ Ay s Als}T:{O} (18)
(i, j=1,2,3, =+, M’N?*+2M+2N+5K+6)

where (C,; are the elements of the frequency
determinant.

The natural frequencies of the plate are
obtained by assuming various frequency domain
parameters, starting from a value near zero, to
determine the values that make the determinant
vanish.

The above equations
obtained from stationary conditions lead to the

following homogeneous equation.

mentioned above

| Cis|=0 (19)

The frequency determinant is symmetric, and is
composed of the natural frequency.

3. Examples of Frequency
Determinants

In Table 2, each letter indicates the boundary
condition at edges starting from the x =g, x=0,
y=b, y=0 order (F: free, S:
ed, C: clamped).

simply support-
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3.1 F-C-F-F Rectangular plate with an
cblique line constraint
Consider the case of a free-clamped-free-free
plate. The boundary conditions and the interior
inelastic displacement constraint are

wx(0, ¥) =0, w(x, ¥)=0. (20)

The frequency determinant is found from Eq.
(18) by retaining the rows and columns associat-
ed with Ann. ptps 7re Use Tos Vs Ao Az Asse
The resulting homogeneous equations and fre-
quency determinant are

[Cis]{Amns ptpn Trs 081 Tes 00 Ao Auze Ais} T =10}

(21)
(m:r::szl, 2, 3‘ oM : 7‘221):1, 2’ 3, ey
N I=1,2 L)
| Cii1=0G, 7=1,2,3, -, M?)N*+ N+2M+2
L+1). (22)

3.2 C-C-F-S Rectangular plate with an
oblique line constraint
Consider the case of a clamped-clamped-free
-simply supported plate. The boundary condi-
tions and the interior inelastic displacement con-
straint are

w0, y) =0, w,(a. yv)=0. w(%. y)=0
(23)
The frequency determinant is found from Eg.
(15) by retaining the rows and columns associat-
ed with A, 7, Au. A A The resulting
homogeneous equation and f{requency determi-
nant are

[(/11] {Amm re Aus Aia A[s}T:{O} (24)

m=r=1,2.3. . M n=1,2,3 -, N:

=12, - L)

| Ciy|=00i, j=1,2.3, -« M*N*+M-+3L).
(25)

3.3 S-S-S-S Rectangular plate with an
obligue line constraint
Consider the case of a simply supported at each
edge. The interior inelastic displacement con-
straint is
(26)

The frequency determinant is found from Eq.

w(x, y)=0.
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(18) by retaining the rows and columns associat-
ed with A,, /s The resulting homogeneous
equation and frequency determinant are

[Ci,j:l{Amnv Azs}T:{O} (27)
(m=n==1,2,3 - M,;n=1,273 -, N;
[==1,2, -, L)
| Cos|=0@, j=1,2.3, -, M*N*+L). (28)
3.4 C-C-C-C Rectangular plate with an
oblique line constraint
Consider the case of a clamped at each edge.
The boundary conditions and the interior inelas-
tic displacement constraint are

wxla v) =0, wx(0, ¥)=0, w,(x. b) =0,
wy(x. 0)=0, w(x, y)=0 (29)

The frequency determinant is found from Eq.
(18) by retaining the rows and columns associat-
ed with 4,,. Ay, Ap, A Aw A The resulting
homogeneous equation and frequency determi-
nant are

[C:i.j] {Amns /lll’ A12s /1[3, AM, Al5}T:{O}

(30)
(m=1,2,3, M :n=1,2,3 - N:l=12
)
| Cii |=0(z. j=1,2.3, -, M2N?*+5L). (31)

4. Results and Discussion

The numerical results on the normalized natu-
ral frequency and mode shapes can be obtained.
The geometry and material properties of the plate
with an oblique inelastic line constraint used in
this analysis are shown in Table 1.

4.1 Normalized frequency parameters

Normalized frequency parameters are obtained
from the frequency determinant by monitoring the
determinant until it vanishes. Table 2 shows the
lowest 4 normalized natural frequencies Q for a
rectangular plate with an interior displacement
constraint under 21 boundary conditions
obtained by the present method and commercial
F. E. M. package, MSC/NASTRAN. The nor-
malized frequency parameter is Q =% wyho/D .

The results obtained by the Double Fourier
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Table 1. Data of a rectangular plate with an oblique inelastic line constraint.

Material

Width of a plate (q)

Length of a plate (p)

Left end point of inelastic line constraint (¢;)
Right end point of inelastic line constraint (¢,)
Slope of the inelastic line constraint (tan )
Young's modulus (E)

Thickness of a plate (%)

Poisson’s ratio (y)

Density of a plate (p)

Mild steel
Im

2m

0.95m
1.05m

0.1
200GP g4
0.0lm

0.3
7800Kg/m?

Table 2. Normalized frequency parameters (2= a’wyho/D) of a rectangular plate with an oblique inelastic
line constraint by analysis and MSC/NASTRAN.
(=095 ,=1.05; tan §=0.1 ; U=N=P=Q=R=S=40; L=30).

Mode sequence

B. C. Method
1 2 3 4
F-F-F-F MSC/NASTRAN 345 6.60 8.38 14.69
Present analysis 3.92 6.92 8.92 15.25
F_-S_F-S MSC/NASTRAN 3.36 5.31 16.87 18.64
Present analysis 3.69 5.47 18.37 19.34
F-C-F-F MSC/NASTRAN 5.31 6.88 18.59 23.51
Present analysis 5.62 7.10 20.52 24,71
F_S_F-S MSC/NASTRAN 4.40 13.08 18.38 22.42
Present analysis 4.63 13.71 19.,24 23.39
S-S-F-F MSC/NASTRAN 11.64 12.58 27.13 32.16
Present analysis 11.74 12.92 28.43 33.55
S-C_F-F NASTRAN 16.72 17.42 30.35 35.00
Present analysis 16.77 67.87 31.78 36.61
F-C-F-§ MSC/NASTRAN 6.17 13.90 22.62 24.98
Present analysis 7.12 14.41 23.78 26.23
C-C-F-F MSC/NASTRAN 23.32 23.80 34.68 38.81
Present analysis 22.89 24.08 36.61 40.95
F-C_F-C MSC/NASTRAN 6.26 17.87 23.56 25.48
Present analysis 6.21 18.95 24.77 26.45
S-S-F-S MSC/NASTRAN 12.06 21.07 29.94 41.24
Present analysis 12.14 21.31 31.18 41.79
S-S-F-C MSC/NASTRAN 14.83 25.16 32.31 44.68
Present analysis 14.23 25.46 32.07 42.55

sine series show the maximum error of about 10%
for the third mode number of F-C-F-F boundary
condition.

Figure 2 shows the convergence of the first two
normalized frequency parameters of F-C-F-F

rectangular plates as the function of the number
of the Lagrange multipliers(l) employed. The

rate of convergence of the present results appears
to be reasonably rapid with M= N=30 terms.
Fig. 3 shows the plots of the normalized fre
quency parameters of the first two modes of an S-
S-S-S rectangular plate with interior displace-
ment constraint with the angle (4) from 0° to 63.
43°(diagonal). In this case, we assume that the
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Table 2. (continued)

Mode sequence

B. C. Method
I 2 3 4
C-C-F-§ MSC/NASTRAN 23.53 29.68 36.94 56.54
Present analysis 24.18 30.20 38.48 58.52
S-C-F-S MSC/NASTRAN 17.07 24.55 33.1 51.42
Present analysis 17.37 24.97 34.54 52.40
S-C-F-C MSC/NASTRAN 16.77 27.75 33.56 50.30
Present analysis 17.30 28.91 36.01 52.40
C-C-F-C MSC/NASTRAN 22.67 32.30 36.98 60.16
Present analysis 24.18 33.85 39.57 64.74
$-5-§-S MSC/NASTRAN 19.56 23.33 48.31 48.57
Present analysis 19.74 23.58 49.15 49.34
S-S-S-C MSC/NASTRAN 20.60 26.76 49.07 51.23
Present analysis 20.92 27.53 49.94 52.30
S-C-S-C MSC/NASTRAN 24.37 29.56 53.63 58.40
Present analysis 24.87 30.29 5497 60.00
S-S-C-S MSC/NASTRAN 23.39 28.56 50.74 53.37
Present analysis 23.98 29.41 52.11 55.07
C-C-§-C MSC/NASTRAN 29.33 34.00 56.15 68.52
Present analysis 30.29 35.23 58.13 71.35
C-C-C-C MSC/NASTRAN 31.41 35.43 62.10 70.07
Present analysis 32.76 36.81 65.13 71.45

7
a
6.5
6
el
5.5
= 5
4‘5 ‘ L A A L I L I L
0 5 10 15 20 25 30 35 40 45
No. of Lagrangian multipliers L
Fig. 2 The normalized frequency parameters of a F

-C-F-F rectangular plate with oblique in-
elastic line constraint vs. no. of Lagrange
multipliers.

(C;=1095; =105 tan 8= 0.1 ; M=N
=P=Q=R=5=40; L=30)

center of the inelastic oblique line constraint is
always coincident with that of the plate. The
frequency parameters increase with the increase of
the angle of the inelastic constraint line.

] 10 20 30 40 50 60 70
Angle of the constraint line 8

Normalized frequency parameters of a S-S-S
-S rectangular plate with oblique inelastic
line constraint vs. the angle (4) of the
oblique inelastic line constraint.
(M=N=20; L=16)

4.2 Mode shapes

Once we obtain the normalized frequency
parameters, their corresponding mode shapes can
be determined. Figure 4 shows the mode shapes of
the first and second modes for the cases of F-C-F-
F, C-C-F-S§, S-S-S-8 and C-C-C-C boundary
conditions. The first(fundamental) mode of a
vibration will evidently be anti-symmetric since
this will involve the least amount of bending
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F-C-F-F

F-C-F-F

fa&s\\\\\\
% 1\\\%&%"
RN 7

\ L7

Fig. 4 Mode shapes for the rectangular plate with an oblique inelastic line constraint.
(c1=095; ;=105 tan §=0.1 ; M=N=P=Q=R=S5=40; [ =30)

energy for symmetric C-C-~C-C boundary condi-
tion along the oblique inelastic line constraint.

5. Conclusions
The proposed method for the free vibration

analysis of a plate with an oblique inelastic line
constraint is found to be effective regardless of the

boundary conditions. This method is based on the
Rayleigh-Ritz method in which only a double
Fourier sine series is used in the modal displace-
ment functions. Some boundary conditions and
the interior constraint that cannot be satisfied
only with the double Fourier sine series are
enforced by means of the Stokes” Transformation
and Lagrange multipliers. Further research into
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the free vibration of the stiffened plate with arbi-
trarily oblique stiffeners will be carried out in
future. The normalized frequency parameters and
mode shapes obtained by the presented method
are well compared with the numerical results
obtained by MSC/NASTRAN.
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Appendix A. Elements of frequency determinants in Eq. (19)
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16) > C10.10: C9,9a
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where diag [---] is a diagonal matrix
Appendix B. Components of elements in frequency determinants in appendix A
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where §,,=Kronecker delta and is defined as follows:
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