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On the Free Vibration Analysis o f  a Plate with an Oblique Inelastic 
Line Constraint 
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The free vibration of a rectangular plate with an oblique inelastic line constraint under 

various boundary conditions is analytically investigated. A double Fourier sine series is 

employed for the modal displacement functions and the method of stationary potential energy 

is applied for the analysis to obtain the general analytical solution. The geometric boundary 

conditions and interior oblique inelastic line constraint are enforced by means of Stokes' 

Transformation and the Lagrange multipliers. The normalized frequency parameters and mode 

shapes are obtained for various b_oundary conditions and the results are cross-checked with 

those by MSC/NASTRAN Finite Element package. 
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N o t a t i o n s  

D : Plate flexural rigidity 

a,b : Plate width and length 

h : Plate thickness 

E : Young's modulus 

V 2 : The Laplacian 

w (:c,y) : Modal displacement functions of 

a plate 

f ( x , y , l )  :Transverse displacements of a 

plate 

v : Poisson 's  ratio 

co : Circular frequency 

.(2= a2co./hp~D - " Normalized frequency parame- 

ter 

p " Mass density 

r : Functional 

c~("') : Variation of the functional 

A~,Bo. .Bmn, Cm~,Do,Do~,D~o,Dm~,Emo,Em~,Eo,,,Fm~ 
: Fourier coeff• 

c~,c:, : E n d  points of an inelastic line 

constraint 

A~,A2,A~ : Lagrange multipliers (j  = l, 2, 
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** Dept. of Mechanical Design and Production Engi- 

neering Seoul National University 

-.., 5) 

/tc, ec, Vorc : Aassumed displacements at the 

corners 

/z~,Cq,.,JT,~ : Four ier  coefficients of the 

assumed displacements at the 

boundary 

0 :Ang le  of the inelastic line con- 

straint 

U~ : Strain energy of the plate 

K~ : Kinetic energy of the plate 

U m a x  :Maximum strain energy of the 

plate 

Kmax : Maximum kinetic energy of the 

plate 

m , n , l , p , q , r , s  : Fourier numbers 

M ~ J ~ P ,  Qd~,S " Number of terms of m, n, l, p, 

q , l ' , S  
U V : Transformed coordinate system 

C,..~ : Elements of the fl'equency deter- 

minant 

d : Length of the inelastic line con- 

straint 

F : Symbol for a free boundary con- 

dition 

C : Symbol for a clamped boundary 

condition 
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:Symbo l  for a simply supported 

boundary condition 

1. Introduction 

The free vibration of a rectangular plate has the 

been subject of numerous studies, many of which 

has discussed the analysis of the plate which has 

internal line support. Plate structures of bridge 

slabs and floor systems which are supported on 

load bearing walls are used in many engineering 

applications. The plates involving various com- 

plicating factors have been considered, including 

the case in which the plates sometimes have inter- 

mediate inelastic constraints arranged obliquely 

to the edge of the plate. The complexity of the 

layout makes it difficult for designers to model 

the floor systems by the equivalent frame method. 

A rigorous free vibration analysis of a plate with 

inelastic line constraint is important to under- 

stand the behavior of the plate. 

An excellent review of the plate vibration 

problems with various boundary conditions was 

made by Leissa (1969). Gorman (1978) used a 

double Fourier sine series as an analytical free 

vibration solution for a rectangular plate with an 

inelastic support along one diagonal. However, 

the solution was obtained only for a simply 

supported boundary condition. Takahasi and 

Chishaki (1978) represented the internal line 

supports by rows of equidistant point support and 

calculated the natural frequencies and mode 

shapes of the plate with simply supported bound- 

ary condition. Chung (1981) obtained the natural 

frequencies and mode shape of the beams with 

point support under various boundary conditions 

by using the Stokes' Transformation. Kim and 

Dickinson (1987), by using orthogonal poly- 

nomial functions, studied the flexural vibration of 

a thin rectangular plate that may be continuous 

over several supports in one or two directions. 

These solutions could not deal with boundary 

conditions which included at least one free 

boundary condition. In a recent paper by Young 
and Dickinson (1993), simple polynomials were 

used with the Rayleigh-Ritz method to obtain the 

natural frequency parameters of a rectangular 

plate with an internal line support parallel to the 

edges. Liew and Xiang (1993) studied the trans- 

verse vibration of a thick rectangular Mindlin 

plate with longitudinal, latitudinal and diagonal 

line support by the two-dimensional  polynomials 

and Rayleigh-Ritz method. 

However, the free vibration analysis of  the 

rectangular plate with an oblique line support, 

which can be used for the wide range of boundary 

conditions, including the free boundary condition 

without assuming specific modal ft, nctions has 

not been published up to authors" best knowl- 

edge. 

In this paper the analytical solutions for the 

normalized frequency parameters and mode 

shapes of a double Fourier sine series type are 

obtained for the free vibration of a rectangular 

plate with an inelastic oblique line constraint for 

various boundary conditions. A unified analytical 

method is developed, which can be used for a 

plate with any types of boundary conditions and 

inelastic oblique line constraint. This method 

allows freedom in choosing the modal displace- 

ment functions and yields analytical solutions for 

the natural frequencies as well as the mode 

shapes. It is not necessary to assume new modal 

displacement functions for each change in bound- 

ary condition and intermediate support condition. 

The use of a double Fourier sine series as modal  

functions will simplify the free vibration analysis. 

In the forced vibration analysis, the spatial 

distribution of an applied force can be expressed 

with double Fourier  sine series. Also its orth- 

ogonal property is a merit for an efficient numeri- 

cal calculation. To enhance the flexibility of the 

double Fourier  sine series, Lagrange multipliers 

are utilized to match the interior inelastic oblique 

line constraint and geometric boundary condi- 

tions, and Stokes" Transformation is used to 

handle the displacements that are not satisfied by 

the double Fourier sine series. 

2. Theory 

Consider a rectangular plate with an oblique 

inelastic line constraint as shown in Fig. 1. 

The typical boundary conditions are imposed 
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Fig. 1 The geometry and coordinate system of a 
rectangular plate with an oblique inelastic 
line constraint. 

on w (x, y ) ,  w,  x(X, y ) ,  w,  y(x, y ) ,  V~(x, y ) ,  Vy 
(x, y ) ,  M~(x,  y ) ,  My(x ,  y) at the boundaries, 

and where w (x, y) are the modal displacement, 

w, x(X, y) and w, y(X, y)  are the derivatives of 

the modal displacement, V~(x, y) and Vy(x, y) 

are the shear forces, and Mx(x ,  y)  and My(x,  y) 

are bending moments. The shear forces and bend- 

ing moments are expressed as follows: 

V,~=-D[u,, .... + ( 2 -  ~,)u,,.,y] (1) 

Vy-- - D [u',yyy+ (2 -- v) W,xxyl (2) 

Mx = w,~x + VW,,, (3) 

where v is Poisson ratio and D is the plate 

bending rigidity. 

2.1 Method of stationary potential energy 
The flexural potential energy of the plate Up 

and the corresponding kinetic energy of the plate 

/s can be expressed as 

D Fb Fa 
U o = 2 J o  Jo {[V2w(x' Y) ]2-2(1  v) 

[]~fl,XX(.~2", 2 ) '~{" ,yy(X,  y ) - - W ,  2Xy(X, y ) ] } d x d y  

(5) 
~ 

Tp = w2,, (x, y) dxdy (6) 
d0 do 

where V z is the kaplacian, p is the mass den- 

sity, a and b are the plate width and length, and 

h is the plate thickness 

The method of stationary potential energy is 
f t 2  based on the variational principle 8 (Up 

�9 t l  -To) dt=O. The variation is taken with respect 

to all the displacements that do not violate the 

geometric boundary conditions. The shear forces 

and the bending moments are associated with the 

natural boundary conditions. The displacements 

and the slopes of the plate are associated with the 

geometric boundary conditions. 

2.2 Modal displacement functions 
If u, (x, y) is a modal displacement function 

that can be expanded in a double Fourier sine 

series in the region ( 0 < x < a ,  0 < y < b ) ,  and if 

its partial derivatives can be expanded in a cosine 

-sine series, the coefficients are formed by the 

usual rule. 

N A . m z x  . n z y  
(x, y) = ~. 2, ~ m ~ s m -  sin (7) W 

m = l n = l  O' b 

f ( x ,  y, t ) = w ( x ,  y ) s i n  col (8) 

where Amn is the Fourier coefficient of w (x, 

y),  m and n are the Fourier number, M and N 

are the numbers of terms of fourier series (m, 

n) and f ( x ,  y, t) is the time-varying transverse 

displacement of the plate. 

The assumed modal displacements at the edges 

and at the corners of a rectangular plate may be 

represented by 

w ( a ,  y) ~ P~b y /~psin ( 0 < y < b ,  x a) (9a) 
p = l  

Q 
w(0, y ) = ~ ] e q s i n  qzcy ,o r < b , x = O )  (9b) 

q=l  b [' ~ Y  

R 
w(x ,  b ) = ~ r ~ ,  sin r z C x ( o < x < a , y = b )  (9c) 

r - I  (/ 
S ,rn �9 STCX "0 ~ w(x,  0 ) = 2 . . i U s S t n ~ t  < . x < . a , y = O )  (gd) 

u,(0, 0) =/z~, u,(0, b) e~ 

w(a ,  b )=r~ ,  w ( a ,  0)=Vc (10) 

where p ,  Q , / r  and are the number of tern> in 

Fourier series (p, q, r,  s). 

It is not necessary that the double Fourier .~ine 

series satisfies any particular boundary condi- 

tions, since Lagrange multipliers and Stokes' 

Transformation can be used to match the 

appropriate geometric boundary conditions. In 

the stationary potential energy approach, it is not 

necessary to enforce the natural boundary condi- 

tions but it is necessary to enforce the geometric 

boundary conditions. The double Fourier sine 

series in Eq. (7) incidentally satisfies all the 
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geometric boundary conditions for the simply 

supported plate (S-S-S-S)  except the oblique 

inelastic line constraint and natural boundary 

conditions. Lagrangc mullipliers are necessary to 

enforce ~:he general ._:c.,,~ctric boundary condi- 

tions. 

2.3 Stokes' Transformation 

By differentiating the double Fourier sine 

series, the modal displacement function can be 

expressed as a double Fourier cosine series with- 

out the constant term which is not considered to 

be a complete set of functions. In order to obtain 

the exact series expressions for the derivatives of a 

double Fourier sine series, Stokes' Transforma- 

tion must be utilized. Stokes' Transformation 

consists of defining each derivative with an in- 

dependent series and of integrating it by parts and 

the newly defined series to obtain the relationship 

between the double Fourier series coefficients: 

The successive derivatives of the plate modal 

displacement functions are as follows: 

N M N 

u,.~(x, y ) ,  ~Bo~sinAZ~,Y + 52 'Y].Bmn 
n = l  O m = I n = l  

YFI TUC ~l rCy 
cos - - - -  s in ( I I a) 

a b 
(O~x<_a,  0 < y <  b),  

M N 
U'.xx(X, y) ~ Z Cm~ sin merx sin nrcy (1 l b) 

m = l n = l  {J 

( 0 < x < a ,  0 < y < b ) ,  

M l]r x -U N 
u',~y(X, y ) = D o +  52. Dmo cos . . . . .  '~, Do,~ 

m = l  a n = l  

. M X ~nrcX  n r c y  cos n : L y +  ~ ~ D,~. cos - - - - -  cos 
() m = l n = l  ( l  b 

(O<_x<_a, O~y<_b)  ( l l c )  
M M N 

U:.y(X, y ) =  Y]. E,.o sin mrcx + ~ "Y]Em,, 
m = l  ( /  m = I n = l  

nrCy sin mrCx cos - - - -  ( I I d) 
a b 

( 0 < x <  a, 0_<y_< b), 
M N 

w.yy(x, y ) =  5-2 ~ b m n s i n  mrCx sin nery ( l l e )  
m = l n = I  (l  

( 0 < x <  a. 0 < y <  b) 

By using the Stokes' Transformation, the coeffi- 

cients of derivatives of the modal displacement 

functions are obtained by integrating by parts of 

using Eq. ( l l a ) ~ E q .  ( l l e ) .  The coefficients of 

the double Fourier series are as follows. 

U~ / ~ , " '  s in 

sin .Z!~rY~ dy (12a) 

eq sin--q~&}sin nrCy . - q=~ - - ~ - - d y  (12b) 

�9 D I r c  2 

D0= r~-- ~ . -  v~+/~. (12d) 

D0~ =: r . ( - I ) ~ - e ~ -  t ) c ( -  1) ~-+-/Zc 

+ - ~ g -  z o s i n  ( -  l)m-- 52. e~ 
q = l  

Dmo== r ~ ( -  l ) = -  e ~ -  v ~ ( - 1 )  m + Iz~ 

+- r~sin r v ( - 1 ) " - ~ ,  . . . .  U s  
I 8=1 

srCx t dx sin ~ 7 - : "  

D [ mrC nrC '~A 
~ :  \--T~--] m~ 

"~ : a (  R 

E=0 = 7~b-.],, {,~1 r~ ' s i n  

sin 2nrCx dr  

(12f) 

(12g) 

rrCx _ 52 v~, sin srCx 
(1 s=l  G 

(12h) 

E nrCA 4 e a r l e  sin r ~ L ) ( _  mn==-~ - m n + ~ J j  {~r~_lrr, 1) n 

~=1 �9 srCx ] �9 m z x  dx (12i) v. s ln a - j s m  a -  

Finn = ( -g : )2Amn (12j, 

2.4 Mathematical  formulation 

According to the variational principle, the 

shear force boundary condition needs no explicit 

consideration since it is natural boundary condi- 

tion. If the geometric boundary condition is 

clamped at the edges, the derivatives of the dis- 

placements at the edges must be forced to zero. 

M N 

w,x(a, y ) : :  32. 32. B m . ( - 1 ) ' s i n ~ ' - : : 0  (13a) 
m = I n = l  U 

M N 

(0, y )  = ~2 ~2 B=~ sin n ~ y  = 0  (13b) W , x  
r n = l n = l  o 

M N mrc~:= 0 
~lb',y (K, b) : :  52 52. Emn ( -- 1 ) nsin (13C) 

m = l n - 1  g1 

M N 
W.y(X. 0) =: 52, 52, E,.n sin mrcx = 0  (13d) 

m = l n = l  (1 

The geometric boundary conditions that must 
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be forced to zero are the end points of the oblique 
inelastic constraint line. 

W (0, C1) = ~, . qTrC1 0 q:lCq 81n ~ - =  (14a) 

w ( a ,  c2) = 32,/zp sin = 0  (14b) 
p=I 

where c~ and c2 are the ends of oblique inelas- 
tic line constraint. 

It is straightforward to have the coordinate 

system transformation rule between X - Y  and 

U - V  (see Fig. 1). The U - V  is the coordinates 
of the oblique inelastic line constraint in the 

X -  Y coordinate system. 

The coordinates of the inelastic line constraint 

and in U axis are as follows: 

s  cos 0, 3 7 = c ~ + u  sin 0 (15) 

where 0 is the angle of the oblique inelastic 
line constraint. 

The displacement w (2 ,  37) along the oblique 

inelastic line constraint that lies in the U - V  

coordinates is as follows. 

N mzc2 n z 3 7 _  
w ( 2 ,  3 7 ) = Z  ~, Am~ sin - -  s in m=ln=l a ~ - - 0  

(16a) 

M N mer (u  cos 0) 
w ( 2 ,  3 7 ) = Z  Y1, Am. s in  

m=ln:l  a 

sin n e r ( c ~ + u s i n O )  0 
b 

(O<_u<_d) 

(16b) 

where d is the length of the oblique inelastic 
line constraint. 

The variational procedure then involves minim- 

ization of the following functional ~ to be made 
stationary: 

{~:gmax--Trnax4- fob{l~=iallCOS~2x (a, y)}dy 

,,u } 
Azssin w ( 2 ,  37) du  

Jo k z = l  a 

+ A l { q ~ = l e q s i n q ~ i + A = { l ~ _ l / . t p  sin ~ }  

where l is the Fourier  numbers of Lagrange 

multipliers and L is the number of terms( l )  in 

Lagrange multipliers. 

Lagrange multipliers (A1, A2, A~5) are related 
to the force type quantities and required to 

enforce the inelastic oblique line constraint. Other 

Lagrange multipliers (An, A~2, A~3, At4) are 
related to the moment type quantities and 

required to enforce the zero derivatives along the 

boundary. By substitution of the double Fourier  

sine series and its appropriate derivatives in Eq. 

(7) and Eq. (8) and Eq. ( l l a ) - - E q .  ( l i e )  into 

Eq. (17), the frequency determinant may now be 

easily constructed with the stationary conditions 

of the functional with respect to the quantities 

(Amn, tip, 8q, ~r, Us, t-tc, ec, Z'c, Oc, A~, d2, An ,  Atz, 

" " ,  A,s). 
The aforementioned equations above obtained 

from stationary conditions lead to this homogene- 
ous equation. 

I C,..j]{Amn, lzp, eq, rr, Os, lZc, ec, rc, Oc, A , ,  A=, 
A,I, A,2,--., A,dT={0} (~8) 
(i, j = l ,  2, 3, ..., M Z N Z + 2 M + 2 N + 5 K + 6 )  

where Ci,s are the elements of the frequency 
determinant. 

The natural frequencies of the plate are 

obtained by assuming various frequency domain 

parameters, starting from a value near zero, to 

determine the values that make the determinant 
vanish. 

The above mentioned equat ions  above  

obtained from stationary conditions lead to the 
following homogeneous equation. 

I c . ,  I=O (19) 

The frequency determinant is symmetric, and is 
composed of the natural frequency. 

3. Examples of Frequency 
Determinants 

In Table 2, each letter indicates the boundary 

condition at edges starting from the x = a ,  x = 0 ,  

y = b ,  y = 0  order (F: free, S: simply support- 
ed, C: clamped).  
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3.1 F-C-F-F Rectangular plate with an 
oblique line constraint 

Consider the case of a free-clamped-free-free 

plate. The boundary conditions and the interior 

inelastic displacement constraint are 

u,,x(0, y ) = 0 ,  w ( 2 ,  37)=0. (20) 

The frequency determinant is found from Eq. 

(18) by retaining the rows and columns associat- 

ed with Am,,, ,up, r~, v,, z'c, Vo A2, A~> A~5. 
The resalting homogeneous equations and fre- 

quency cleterminant are 

[Ci, j l{zZ[mn, ,Up, rr,  LJs, re, LIe, A2, At2, Ats}r={0} 
(21) 

( m = r = s = l ,  2, 3, ..., M ; n = p = l ,  2, 3, ..., 

N : I = I ,  2 , . . . , L )  

[ C~,j I = 0 ( i ,  j = l ,  2, 3, ..-, M 2 N 2 + N + 2 M + 2  
L + I ) .  (22) 

3.2 C-C-F-S Rectangular plate with an 
oblique line constraint 

Consider the case of a c lamped-clamped-free 

-simply supported plate. The boundary condi- 

tions and the interior inelastic displacement con- 

straint are 

w,~(0, y ) = 0 ,  w.x(a, y ) = 0 ,  u , ( s  ~)  =:0. 

(23) 

The frequency determinant is found from Eq. 

(15) by retaining the rows and columns associat- 

ed with A ~ ' ,  Z'r, A , ,  AL> A~5. The resulting 
homogeneous equation and frequency determi- 

nant are 

[C,a]{Am,, r,-, A,,, Az2. Ats}r={0} (24) 
( m = y = l ,  2, 3 . . . . ,  M : n = l ,  2, 3, ..., N ; 

l = l ,  2 , . . . , L )  

I C,.~ I = 0 ( i ,  j = l ,  2, 3, ... M 2 N e + M + 3 L ) .  
(25) 

3.3 S -S -S - S  Rectangular plate with an 
oblique line constraint 

Consider the case of a simply supported at each 

edge. The interior inelastic displacement con- 

straint is 

w (2 ,  Y) =0.  (26) 

The frequency determinant is found from Eq. 

(18) by retaining the rows and columns associat- 

ed with Am~, A~5. The resulting homogeneous 

equation and frequency determinant are 

[ C~.j] {Am', A~s} r = {0} (27) 

( m = n = : l ,  2, 3, " ' ,  M ;  n = l ,  2, 3 , - ' - ,  N ; 
t : : l ,  2, ..., L) 
I (&~l=O(i, j = l ,  2, 3, ..., M 2 N 2 §  (28) 

3.4 C-C-C-C Rectangular plate with an 
oblique line constraint 

Consider the case of a clamped at each edge. 

The boundary conditions and the interior inelas- 

tic displacement constraint are 

u'.x(a, y ) = 0 ,  W.x(0, y ) = 0 ,  W,y(X, b )=0 ,  
W.y(X, 0)--0,  w(.ff,  y ) = 0 .  (29) 

The frequency determinant is found from Eq. 

(18) by retaining the rows and columns associat- 

ed with Am', An,  At2, A~a, Az4, A~5. The resulting 
homogeneous equation and frequency determi- 

nant are 

[C,.~]{Am', A,,, A,~, A,~, A,~, A,.d~={0} 
(30) 

( m = l , 2 , 3 , . . . , M ;  n = l , 2 , 3 , . - - , N ;  l = 1 , 2 ,  

--', L) 
I c , ,~l=0(i ,  j = l ,  2, 3, ..., MZNZ+5L) .  (31) 

4. Results  and Discussion 

The numerical results on the normalized natu- 

ral frequency and mode shapes can be obtained. 

The geometry and material properties of the plate 

with an oblique inelastic line constraint used in 

this analysis are shown in Table 1. 

4.1 Normalized frequency parameters 
Normalized frequency parameters are obtained 

from the frequency determinant by monitoring the 

determinant until it vanishes. Table 2 shows the 

lowest 4 normalized natural frequencies ,(2 for a 

rectangular plate with an interior displacement 

constraint  under 21 boundary  cond i t ions  

obtained by the present method and commercial 

F. E. M. package, M S C / N A S T R A N .  The nor- 

malized frequency parameter is • = a  z co~/hpTD-. 
The results obtained by the Double Fourier  
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Table 1. Data of a rectangular plate with an oblique inelastic line constraint. 

Material 

Width of a plate (a) 

Length of a plate (b) 

Left end point of inelastic line constraint (c~) 

Right end point of inelastic line constraint (c2) 

Slope of the inelastic line constraint (tan 0) 
Young's modulus (E)  

Thickness of a plate (h) 

Poisson's ratio (u) 

Density of a plate (p) 

Mild steel 

lm 

2m 

0.95m 

1.05m 

0.1 

200G P a 

0.01m 

0.3 

7800Kg/m 3 

Table 2. Normalized frequency parameters ( f2=aZcoff fp~D) of a rectangular plate with an oblique inelastic 

line constraint  by analysis and M S C / N A S T R A N .  

(c1=0.95 : c2=1.05 ; tan  0--0.1 ; M - - N - - P ~ Q = R = S = 4 0  ; L - -30) .  

B.C.  Method 
Mode sequence 

1 2 3 4 

F F F F  

F S F - S  

F - C - F - F  

F S F S  

S - S - F - F  

S - C F F  

F - C - F - S  

C - C - F - F  

F C F C  

S S-F-S  

S -S -F  C 

M S C / N A S T R A N  

Present analysis 

M S C / N A S T R A N  

Present analysis 

M S C / N A S T R A N  

Present analysis 

M S C / N A S T R A N  

Present analysis 

M S C / N A S T R A N  

Present analysis 

NASTRAN 

Present analysis 

M S C / N A S T R A N  

Present analysis 

M S C / N A S T R A N  

Present analysis 

M S C / N A S T R A N  

Present analysis 

M S C / N A S T R A N  

Present analysis 

M S C / N A S T R A N  

Present analysis 

3.45 6.60 8.38 14.69 

3.92 6.92 8.92 15.25 

3.36 5.31 16.87 18.64 

3.69 5.47 18.37 19.34 

5.31 6.88 18.59 23.51 

5.62 7.10 20.52 24.71 

4.40 13.08 18.38 22.42 

4.63 13.71 19,24 23.39 

11.64 12.58 27.13 32.16 

I1.74 12.92 28.43 33.55 

16.72 17.42 30.35 35.00 

16.77 67.87 31.78 36.61 

6.17 13.90 22.62 24.98 

7.12 14.41 23.78 26.23 

23.32 23.80 34.68 38.81 

22.89 24.08 36.61 40.95 

6.26 17.87 23.56 25.48 

6.21 18.95 24.77 26.45 

12.06 21.07 29.94 41.24 

12.14 21.31 31.18 41.79 

14.83 25.16 32.31 44.68 

14.23 25.46 32.07 42.55 

sine series show the m a x i m u m  error  of  a b o u t  10% 

for the th i rd  mode  n u m b e r  of  F - C  F F b o u n d a r y  

cond i t ion .  

F igure  2 shows the convergence  of  the first two 
norma l i zed  f requency parameters  of  F C - F  F 

rec tangu la r  plates as the funct ion  of  the n u m b e r  

of  the Lagrange  m u l t i p l i e r s ( L )  employed.  The  

rate of  convergence  of  the present  results appears  

to be r easonab ly  rapid  with M - - N = 3 0  terms. 

Fig. 3 shows the plots of  the no rma l i zed  fre 

quency paramete r s  of  the first two modes  of  an  S-  

S - S - S  rec tangu la r  plate with in ter ior  displace-  

ment  cons t r a in t  with  the a n g l e ( 0 )  f rom 0 ~ to 63. 

43~  In this case, we assume tha t  the 
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B. C .  

{1 

Method 
Mode sequence 

i 2 3 4 

C - C F S  

S - C - F - S  

S - C - F - C  

C-C- F-C 

S-S--S-S 

S-S-S-C 

S-C S-C 

S-S-C-S  

C - C - S - C  

C-C C-C 

M S C / N A S T R A N  

Present analysis 

M S C / N A S T R A N  

Present analysis 

M S C / N A S T R A N  

Present analys~s 

M S C / N A S T R A N  

Present analysis 

M S C / N A S T R A N  

Present analysis 

M S C / N A S T R A N  

Present analysis 

M S C / N A S T R A N  

Present analys~s 

M S C / N A S T R A N  

Present analysis 

M S C / N A S T R A N  

Present analysis 

M S C / N A S T R A N  

Present analysis 

23.53 29.68 36.94 56.54 

24.18 30.20 38.48 58.52 

17,07 24.55 33.11 51.42 

17.37 24.97 34.54 52.40 

16.77 27.75 33.56 50.30 

17.30 28.91 36.01 52.40 

22.67 32.30 36.98 60.16 

24.18 33.85 39.57 64.74 

19.56 23.33 48.31 48.57 

19.74 23.58 49.15 49.34 

20.60 26.76 49.07 51.23 

20.92 27.53 49.94 52.30 

24.37 29.56 53.63 58,40 

24.87 30.29 54.97 60,00 

23.39 28.56 50.74 53,37 

23.98 29.41 52. I 1 55.07 

29.33 34.00 56.15 68.52 

30.29 35.23 58.13 71.35 

31.41 35.43 62.10 70.07 

32.76 36.81 65.13 71.45 

42 

6.5 

6 

5 

4.5 

Fig. 2 

I i I i I i i I 

0 5 10 15 20 25 30 35 40 4 5  

No. of  Lagrangian mukipliers L 

The normalized frequency parameters of a F 
- C - F - F  rectangular plate with oblique in- 
elastic line constraint vs. no, of Lagrange 
multipliers. 
(C~= 0.95 ; cz= 1.05 ; tan 0 =  0.1 ; M = N  
= : P = Q = R = S = 4 0  ; L=30)  

center of the inelastic obl ique  line constraint  is 

always coincident  with that of  the plate. The 

frequency parameters increase with the increase of  

the angle of  the inelastic constraint  line. 

4O 
3 8  

36 
3 4  

30 

26 
2 4  

22 
20 
18 
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Table 2. (continued) 

Fig. 3 

i i i i I I 

10 20 30 40 50 60 70 
Angle of t.he constraint ~ 0 

Normalized lYequency parameters of a S- S-S 
S rectangular plate with oblique inelastic 

line constraint vs. the angle (0) of the 
oblique inelastic line constraint. 
( M = N = 2 0  ; L = I 6 )  

4.2 M o d e  s h a p e s  

Once we obtain  the normalized frequency 

parameters,  their corresponding mode shapes can 

be determined.  Figure 4 shows the mode shapes of  

the first and second modes for the cases of  F - C - F -  

F, C C - F - S ,  S S - S - S  and C - C - C - C  boundary  

condit ions.  The  f i rs t (fundamental)  mode of  a 

vibrat ion will evidently be ant i -symmetr ic  since 

this will involve the least anaount of  bending 



366 Jong Ouk Youn, Jang Moo Lee and Yoon Young Kim 

y X 

F-C-F-F F-C-F-F 
1st mode 2nd mode 

C-C-F-S C-C-F-S 
1st mode 2nd mode 

S-S-S-S S-S-S-S 
1st mode 2nd mode 

C-C-C-C C-C-C-C 
Ist mode 2nd mode 

Fig. 4 Mode shapes for the rectangular plate with an oblique inelastic line constraint. 
(c~=0.95 ; cz=l.05 ; tan 0=0.1 ; M = N = P = Q = R - S = 4 0  ; L=30) 

energy for symmetric C - C - C - C  boundary condi- 

tion along the oblique inelastic line constraint. 

5. Conclusions 

The proposed method for the free vibration 

analysis of a plate with an oblique inelastic line 

constraint is found to be effective regardless of the 

boundary conditions. This method is based on the 

Rayleigh-Ritz method in which only a double 

Fourier sine series is used in the modal displace- 

ment functions. Some boundary conditions and 

the interior constraint that cannot be satisfied 

only with the double Fourier sine series are 

enforced by means of the Stokes' Transformation 

and Lagrange multipliers. Further research into 
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the free vibration of the stiffened plate with arbi- 
trarily oblique stiffeners will be carried out in 
future. The normalized frequency parameters and 
mode shapes obtained by the presented method 
are well compared with the numerical results 
obtained by MSC/NASTRAN. 
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Appendix A. Elements of frequency determinants in Eq. (19) 
Cl,l:diag[Fmn], CI,2= [0], C1,3: [0], Ci,4= [l~[mn,flll, 

Cl,~=E~m.,,2], C1,0=[--=m.,13], C,,7=E~m~,.], C,,8=[Ym.,I~], 
C,,9 = [P lm. ] ,  Ci,1o = EP2,~.]. C1,11= [P3m.], CI.12=: [P4m,~], 
Cl,la= EQlmn.q], C1,,4-- EQ2mn,q], C1,15= EO 3 . . . .  ], C1.16:: [O 4 . . . .  ], 

Cz2= ~ ] l E q s i n ~  c~1 . [p~]f, sin - - ,  C2, ,=[0] ( i=4,  5, ..., 16), 

C,,s=[O[ (i. j=3 ,  4, ..., 8) 

c 9 ' 9 = ~ - - [  a2b z ,=i a2b 2 + ~=1 aZb 2 4- m=ln=l a2b 2 " 

C _ abD[  1 6 ( l - u )  l ) , , ~ , ~ u )  ~ 32(1~u) , ~  ~ 6 4 (1 -u )  
9'1~ I_ a2b z ( -  ,=1 a b m=~ a-Z~ (-- 1) m.~_lnz~=l a2b2 ], 

C a b D [ 1 6 ( 1 - u )  N 32(1-- U) 32(1 ~U) l),+m ff] ~. 64(1 ~U) ] 
9,11=--~--[_ a 2 b ~  ~- ( - -1)n~ i  a262 ]- (-1)mra=l ~' ~-2~ ~- (-- m = l n = l  a-27: ' 

C abD r 16(1-- u) ~. 32(1 ~u)  32(1-- u) 64(1--u) ] 
9 " ~ = - g - L -  a~b ~ .=1 ~2-2~ (__])m~,,m:l 6~2b 2 (--1)m'~"'~'m=ln=, a2b 2 ' 
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C9,~=[0] (i=13, 14, ..., 16), Clo.ao=C9.9, 

a2b 2 ,,:1 aZb z ( - -  I ) mm~=l aZbZ ~:1,=1 aZb z ' 

C abDr l6 ( l_2u  ) N 32(1--~) +_(__1)=~ 32(172~ ) 1)n+,.~,~,64(17-o~)1 
1 0 , 1 2 = ~  ~2b'~ }- ( - -  l )  nn~=l a 2 b 2  m=, •2b• [- ( - -  m=ln= l  a 2 b "  

Cto.,=I01(i=13, 14, ..., 16) 
Cu,n a ~ _ [ 1 6 ( l ~ )  ~, 32(1-~) ~ 32(I ~) ~, ~ 6 4 ( 1 - ~ ) ]  

= - -  a 2 ~  t-,,:1 a2b = Jr m=I 6r -2 4- m=ln=l a2b 2 " 

abDg 16(1 u) U 32(1--u) 32(1-u) 64(1--u) 
1 1 , , 2 : T L  (-1)-5-2, ~ a = b 2  ( - I )" '~ ,  ~ a262 C aeb z aZb 2 J n=l  m=l m=ln= l  

C.,~=I01(i=13, 14, ..-, 16), C,z,~z Cu,H, C,a,,= [0] (i 13, 14, ..., 16) 
C,a.,a=diagIRl,.p], C1a,,4= [RZp,ql, C1a,~5= [R3p rl Caa,~6 = [R4p,=I, 
C~4a4=diag[R5q,q], C~4,~s= [R6q,,-], C~4,~6= [R7q,,], Cas.,~= [R8~,~], 
C,=,,6 [R9~,s], C,6,6=[Sl0ss] C,,,=Cf,, �9 

where diag [--.] is a diagonal matrix 

Appendix B. Components of elements in frequency determinants in appendix A 

re:q_ z~ 2 

~ " ' l l = ~  t ( n z / b  l z /b)  (ner/b+ l z /b )  ' 

mTc o== w{  (nzc/b lzc/b) (nzr/b+lzc/b) 
_ net { cos (met- let) cos (mer+lzc ) }  
" ~ ' m n , 1 3 = ~ - (  1) ~ ( m z r / a -  lzc/a) (mzr/a+ l.zr/a) 

~= nzcf cos (mzc- let) cos (mzr + lz) } 
, ,~4=~-) (mzr/a lzc/a) ( m z r / a + l z r / a ) '  

t l - c o s ( - m ~ r d / a + n z d / b + h r )  1 - c o s ( m ~ r d / a + n z d / b - b r )  }+_ 
n c~ ( - m z c / a + n a ' / b + l z r / d )  ~ (mzr /a+ner /b - l z c /d )  

c o s @  1 c o s ( m e r d / a - n z c d / b +  lzc l - c o s ( - m z r d / a - , z z d / b -  ler) 
(met~a-  nzc/b + lzc/d) ~ ( - met~a-  nzc/b - lzc/d) y, 1 

~ " ' ~ - 4  { sin( mzrd/a+nzrd /b+ lzc) s i n ( m z r d / a + n z c d / b -  lzr) t 
sin nZbC~l ( - m z c / a + n z r / b + l z c / d )  ~ (mzr /a+nzc /b - l z c /d )  

sin (mzcd/a + nzrd/b + let) sin (razed~a- ,zzcd/b + [zr) 
(mzr /a+nzc/b+Dr/d)  ~ ( m e r / a - n e r / b + l ~ / d )  

pl ~,.-- (1 -u )D ( l - u ) D  
4ab , p2,~,, = 4ab ( - 1 ) ~ 

p3~ , -  (l-u)D4ab ( -  l)~m+n~, P4m,,= (l-u)D(-l)m4ab (-1)~'  

Q~ _ ab2D i m 8maz a , a2b a '~='~-- 16 , - - I ) [ ~  (16--8u) mn2za]3np, 

Q2~.,q= ab~D[8maz3 ' (16-8u)mn2era] [~b -~ aZb a 

n 8113a "a , Q3 .... = abeD ( - 1 )  [ ~ #  (16-8u) nm~zc a ].v 
16 ~ a  J . . . .  
abaD 18] / /3K 3 , (16--8~) nm2Ka_](~ms ' Q4 16 [ b4a-a + boa 3 

, ~ . ~  D m ~  + ~. ~, 2 ( ~ - ~ ) D ~  ~ Rlv ,o=~ ,  (l_u)Dn2er2 M N 2 2 

M N 2 2 x~ ~ Dm zc 3. ~,, R2vq=' n:~' (1-t~)Dn27C2~nt'Onq-mZ"~n2~-'x~a v q, 
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R 3 p ~ = _ _  ~ ~ Dmn~r2 
' m = t n = l  a ~  ( -  l)(m+n)~np~mr' 

N R 4 p ,  = ]~ ( 1 -- u) D m n z  z �9 n : ,  a b  ( - - l ) ( m + n ) ~ n P a m s - - ~ '  ( - - 1 ) m ~  n=l lY)Dn27/Zab anpams. 

N M N 2 2 
t e S q q = : ~  ' ( 1 - u ) D n  er a &,p+ E E ~ - & , p +  ~ ~ 2 ( 1 -  ~)Dn2a'2 

�9 n = l  ( /  m = l n = l  a m = l n = l  ab (~nq, 
M N D~,j,1 ~,~ ~. 2 

I~6q, r = --  m~==ln~__l--~l~--- ( - -  1)  'n anqamr, 

R 7 q , s =  "~ Dmnera .~ " - - - - - - ~ n q S m s ,  
~ ' = l n = l  ab 

R 8 ~ = "  5 ( l _ u ) D m 2 , r  2 M N D.w2.re2  M N 

,,=~ ab m=ln=l u rn=ln=l ab 6 ~ ,  

D n  er R 9 , . , = - -  ~ ( l - u ) D m 2 e r  z M N 2 2 
' m=, (.lb ( - l ) n a r a r a m s - m ~ = , n ~ = , - b  g ~ ( - - [ ) n a m r a m r  

__ f e 2 ( ,  m = l n = i  (lb ( - -  l ) n ~ m r ~ m s "  

R l 0 ~ s = ~ ,  (I-p)D*/~z22"2 M N [~tq2c,r2 M N 9 Xa x;, . . . . .  .~ + xO ~ - ( I - u ) D m 2 7 c  2 
m=l ab 6ms+ z., ~. a ~,ms ~ z., Om~, ' m = 1 . = 1  b m=ln=l ab 

where &j=Kronecker  delta and is defined as follows: 

I i f ( i = j )  
&J={ 0 i f ( i # j )  


